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Diffusion through piecewise washboard potential

V. Berdichevsky and M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 14 May 1999!

We consider the influence of small periodic oscillations of barriers on the stationary motion of a particle
through a piecewise washboard potential. Up to the second order in the amplitude of oscillation the corrections
to the flux can be both positive and negative and, for equal widths of the well and barrier, they do not depend
on the frequency of the oscillations.@S1063-651X~99!05812-2#

PACS number~s!: 05.40.2a
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The qualitative characteristics of nonlinear problems h
many generic properties which are not too sensitive to a c
crete form of nonlinearity. Then, the correct strategy w
be—along with numerical and approximate solutions
complicate nonlinear potentials—to choose the simp
form of nonlinearity which allows an analytical solution.

Recently @1# we have presented analytical solutions f
one-dimensional diffusion of a classical particle through
bistasble piecewise potential. For the time-dependent p
lem, our method is highly efficient when one knows the e
act solution of the corresponding time-independent probl

In this Brief Report we consider a particle moving in
washboard potential which is composed from element
units shown by solid lines in Fig. 1 and extended in bo
directions to6` ~dotted lines in Fig. 1! in such a way that
both ends converge to a common point. A washboard po
tial represents a sum of constant and periodic force wh
appears in many physical problems. A typical example is
Josephson junction where the driving force acting on
phase difference between electron pair across the junc
consists of constant and sinusoidal forces@2#, i.e., the poten-
tial has a form2ax2b cos(x). We show in Fig. 1 this po-
tential for a55 andb515 together with our washboard po
tential composed of segments of straight lines. Anot
examples of the problems with the washboard potential
charge density waves@3#, phase locking in electric circuits
@4#, mode locking in ring laser gyroscopes@5#, motion of
fluxons in superconductors@6#, penetration of biological
channels by ions@4#, and others.

Hence, in this Brief Report we consider a particle movi
in a washboard potential shown in Fig. 1. Each barrier ha
heightV1 from the right side, and the heightV2 from the left
side, and all barriers are subjected to periodic oscillati
with frequencyV. Although the widths of the wells and th
barriers have to be different to ensure the corresponde
with the Josephson junctions~Fig. 1!, we consider the
slightly simpler case of equal widths. We assume that
particle moves from one potential minimum to another o
due to a Gaussian random force of strengthD. When a par-
ticle reaches the position of jumps of potential it is expos
to the d-functional force. The more convenient procedu
which we use in what follows is one that takes into acco
this force by matching the solutions in two regions adjac
to the jump of potential.

The stationary state of such system is described by
constant fluxJ supported from outside in a downward dire
PRE 601063-651X/99/60~6!/7562~3!/$15.00
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tion. We find first the solution of the Fokker-Planck equati
which corresponds to the constant flux. Then we add a p
odic signalA cos(Vt) to the system, which we assume to a
on the potential barrier as it is shown in Fig. 1. Our aim is
find the corrections to the fluxJ caused by the periodic force
Two nonobvious results have been obtained in the seco
order perturbation theory inA/D. First, for the case consid
ered of equal widths of the well and the barrier, the corr
tions to the flux do not depend on the frequencyV of the
field, and, secondly, these corrections may reduce the in
flux when the ratio of the heights of the potential barriers
small enough.

The Fokker-Planck equation for the probability dens
function P(x,t) for the positionx of a diffusive particle at
time t is

]P

]t
5

]

]x F]U

]x
P1D

]P

]x G[2
]J

]x
, ~1!

whereJ is the probability current. For the piecewise pote
tials, ]U/]x50, and Eq.~1! reduces to a simple diffusion
equation. However, the barrier heights enter the match
conditions, namely, one has to solve Eq.~1! in each region of
U(x)5const, and then to ensure the continuity ofJ across
the boundary of these regions. The matching conditions
pointsz of a finite jump of the potentialU(x) have the fol-
lowing form @7#:

P~z10,t !expS U~z10!

D D5P~z20,t !expS U~z20!

D D ,

~2!

FIG. 1. Washboard piecewise potential with oscillating barrie
Here V1 and V2 are the barrier’s heights with respect to left an
right wells, respectively. All the barriers are subjected to osci
tions of the formA cos(Vt). The thin lines represent the Josephs
potential25x215 cos(x).
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]P~z10,t !

]x
5

]P~z20,t !

]x
. ~3!

Denoting the probability function in the region21,x
,02 asP1(x,t) and that in region 01,x,1 asP2(x,t) one
can rewrite the matching conditions~2! and ~3! as

P1~0,t !5P2~0,t !expS V11Acos~Vt !

D D , ~4!

]P1~0,t !

]x
5

]P2~0,t !

]x
. ~5!

The matching condition atx51 are similar to Eq.~5! if one
takes into account that due to the periodic repetition of
elementary blocks the distribution function at the pointx
511 is equal to that atx5211, i.e.,

P2~1,t !expS V21A cos~Vt !

D D5P1~21,t !. ~6!

Finally, the flux entering the elementary block atx521
has to be equal to the flux flowing out of this block atx
51,

]P1~x521,t !

]x
5

]P2~x51,t !

]x
. ~7!

The expansion of exp„A cos(Vt)/D… in a series of modified
Bessel function of the first kind@8# yields

expS A cos~Vt !

D D5 (
l 52`

`

I l S A

D D cos~ lVt !. ~8!

Using expansion~8! in Eqs.~4! and~6! one seeks a solution
of Eq. ~1! in regionsm51,2 in the form

Pm5Sm1(
l 51

` S A

D D l

f m
l ~x,t !. ~9!

We keep only two corrections of lowest order inA/D to
the field-free probabilitiesSm . Then, one has to keep th
following terms in Eq.~9!:

Pm5Sm1
A

D
$@ f mexp~rx !1 f̃ mexp~2rx !#exp~ iVt !1c.c.%

1S A

D D 2

~gm1zmx!, ~10!

wherer 5( iV/D)1/2 and c.c. stands for the complex conj
gate.

For the time-independent part of the solutions one imm
diately finds from Eqs.~4! and ~6! that

S15FcS V1

D
,
V2

D DexpS V1

D D2xG J

D
, ~11!

S25FcS V1

D
,
V2

D D2xG J

D
, ~12!
e

-

where

cS V1

D
,
V2

D D5

11expS V2

D D
expS V2

D D2expS V1

D D . ~13!

Collecting now all terms of the first order inA/D in Eqs.~4!,
~5!, ~6!, and~7! one obtains, respectively,

f 11 f̃ 15S S2~x50!

2
1 f 21 f̃ 2DexpS V1

D D , ~14!

f 12 f̃ 15 f 22 f̃ 2 , ~15!

FS2~x51!

2
1 f 2 exp~r !1 f̃ 2 exp~2r !GexpS V2

D D
5@ f 1 exp~2r !1 f̃ 1 exp~r !#, ~16!

f 2 exp~r !2 f̃ 2 exp~2r !5 f 1 exp~2r !2 f̃ 1 exp~r !. ~17!

It follows from Eqs.~15! and ~17! that f 152 f̃ 2 and f 2

52 f̃ 1. The latter together with Eqs.~14! and ~16!, leads to

f 1~r !5 f̃ 1~2r !5
1

2@exp~2r !2exp~r !#

3F S2~x51!

@11exp~2V2 /D !#

2exp~r !
S2~x50!

@11exp~2V2 /D !#G . ~18!

Repeating the same procedure for the second order in (A/D)
terms in the distribution function~10! and using the normal-
ization condition one obtains

g152g25
@S2~x50!12~ f 21 f̃ 21c.c.!#

4@11exp~2V1 /D !#
, ~19!

z15z25g12
1

4@11exp~2V2 /D !#

3@S2~x51!12~ f 2 exp~r !1 f̃ 2 exp~2r !1c.c.!#.

~20!

Our prime interest is the change of the flux due to t
oscillations of barriers. The renormalized fluxJ̃ is defined
according to Eq.~10! asJ1(A/D)2z1 which with the use of
the foregoing formulas takes the following simple form:

J̃5JF11S A

D D 2

3
12v12v226v1v22v1v2~v11v2!1v1

2v2
2

4~11v1!2~11v2!2 G ,
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v1,2[expS V1.2

D D . ~21!

Two interesting conclusions follow from Eq.~21!:
~1! The renormalized flux is independent of the frequen

V of oscillations. The latter which enters all the foregoi
formulas throughr 5( iV/D)1/2 does not appear in Eq.~21!.
However, the dependence on frequency will appear if
width of the well is different from the width of the barrier a
in the case of Josephson junctions.

~2! The correction to the flux induced by oscillations c
be both positive and negative depending on the bar
heights. For example, forv1[exp(V1 /D)510, the correction
to the flux is positive forv2[exp(V2 /D).2, and negative for
v2[exp(V2 /D),2.

The toy example of our system is a waterfall of const
e

v

s

y

e

r

t

power when the water is falling through cascade of horiz
tal steps with notches~barriers! along the end of each step
The question is what is the influence of the small perio
oscillations of the barriers~or steps! on the power of the
waterfall. The answer is that such oscillations may both
crease or decrease the power, and this influence is inde
dent on the frequency of oscillations.

The graph of Josephson potential in Fig. 1 shows a c
similarity between our model and the real problems invo
ing washboard potentials. However, the qualitative comp
son cannot be performed since we consider a motion i
periodically changing flat potential while in real problem
the periodic force acts on a moving particle. This differen
results, in particular, in the correctionDJ to a flux @Eq. ~21!#
which does not depend on frequency for the given geome
in contrast to the strong frequency dependence for the
sephson junctions~‘‘Shapiro’’ steps!.
ys.
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