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Diffusion through piecewise washboard potential
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We consider the influence of small periodic oscillations of barriers on the stationary motion of a particle
through a piecewise washboard potential. Up to the second order in the amplitude of oscillation the corrections
to the flux can be both positive and negative and, for equal widths of the well and barrier, they do not depend
on the frequency of the oscillationsS1063-651X%99)05812-2

PACS numbds): 05.40—a

The qualitative characteristics of nonlinear problems havdion. We find first the solution of the Fokker-Planck equation
many generic properties which are not too sensitive to a conwhich corresponds to the constant flux. Then we add a peri-
crete form of nonlinearity. Then, the correct strategy will odic signalA cos()t) to the system, which we assume to act
be—along with numerical and approximate solutions foron the potential barrier as it is shown in Fig. 1. Our aim is to
complicate nonlinear potentials—to choose the simplesﬁnd the corrections to the flukxcaused by the periodic force.
form of nonlinearity which allows an analytical solution. ~ Two nonobvious results have been obtained in the second-

Recently[1] we have presented analytical solutions fororder perturbation theory iA/D. First, for the case consid-
one-dimensional diffusion of a classical particle through aered of equal widths of the well and the barrier, the correc-
bistasble piecewise potential. For the time-dependent proldions to the flux do not depend on the frequeri¢yof the
lem, our method is highly efficient when one knows the ex-field, and, secondly, these corrections may reduce the initial
act solution of the corresponding time-independent problemflux when the ratio of the heights of the potential barriers is

In this Brief Report we consider a particle moving in a small enough.
washboard potential which is composed from elementary The Fokker-Planck equation for the probability density
units shown by solid lines in Fig. 1 and extended in bothfunction P(x,t) for the positionx of a diffusive particle at
directions to+ (dotted lines in Fig. Lin such a way that timetis
both ends converge to a common point. A washboard poten-
tial represents a sum of constant and periodic force which f _ 9
appears in many physical problems. A typical example is the at  oIx
Josephson junction where the driving force acting on the
phase difference between electron pair across the junctiofyhereJ is the probability current. For the piecewise poten-
consists of constant and sinusoidal forf2k i.e., the poten- tials, dU/9x=0, and Eq.(1) reduces to a simple diffusion
tial has a form— ax_bcosé()_ We show in F|g 1 this po- equation. However, the barrier he|ghtS enter the matChing
tential fora=5 andb= 15 together with our washboard po- conditions, namely, one has to solve Etj.in each region of
tential composed of segments of straight lines. Anothet(X)=const, and then to ensure the continuityJo&cross
examples of the problems with the washboard potential aréhe boundary of these regions. The matching conditions at
charge density wavel8], phase locking in electric circuits Pointsz of a finite jump of the potentiall (x) have the fol-

[4], mode locking in ring laser gyroscopés], motion of  lowing form [7]:
fluxons in superconductor6], penetration of biological
channels b_y ion$4],_ and others. _ . _ P(z+0,t)exr< U(Z+O)) —P(z— O,t)exp( U(z—O))’

Hence, in this Brief Report we consider a particle moving D D
in a washboard potential shown in Fig. 1. Each barrier has a 2
heightV, from the right side, and the heighf, from the left
side, and all barriers are subjected to periodic oscillations
with frequency(). Although the widths of the wells and the
barriers have to be different to ensure the correspondence
with the Josephson junction&ig. 1), we consider the
slightly simpler case of equal widths. We assume that the
particle moves from one potential minimum to another one
due to a Gaussian random force of strenBthwhen a par-
ticle reaches the position of jumps of potential it is exposed
to the S-functional force. The more convenient procedure
which we use in what follows is one that takes into account FiG. 1. Washboard piecewise potential with oscillating barriers.
this force by matching the solutions in two regions adjacenHere v, andV, are the barrier's heights with respect to left and
to the jump of potential. right wells, respectively. All the barriers are subjected to oscilla-

The stationary state of such system is described by thgons of the formA cost). The thin lines represent the Josephson
constant fluxJ supported from outside in a downward direc- potential — 5x— 15 cosk).
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dP(z+0t) odP(z—0yt) where
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Denoting the probability function in the region 1<x Vi V, _ D
<0~ asP,(x,t) and that in region 0<x<1 asP,(x,t) one ¥ D'D/)” A A (13

can rewrite the matching conditiorig) and (3) as ex;< B) —ex;< B)
P,(0t)= P2(0,t)exp< w) (4)  Collecting now all terms of the first order WD in Egs.(4),
D (5), (6), and(7) one obtains, respectively,

P1(08)  aP,(01)
x  oax

(5) f1+?1:

x=0 -

Vy
ex;{ B) , (14)

f,—Ti="f,— 15, (15

ati

The matching condition at=1 are similar to Eq(5) if one
takes into account that due to the periodic repetition of the
elementary blocks the distribution function at the point
=1% is equal to that ak=—1", i.e.,

S(x=1)

+f,exp(r)+f,exp—r)

2
V,+AcogQt) ~
Po(lpexg ——p5——|=Pu=1D). (6 =[fyexp(—r)+T,expr)], (16)
Finally, the flux entering the elementary blockxat —1 foexpr)—f,exp—r)=f,exp(—r)—f,expr). (17)
has to be equal to the flux flowing out of this blockat
=1, It follows from Eqs.(15) and (17) that f,=—T, andf,

= —71. The latter together with Eq$14) and(16), leads to

dP1(x=—11t) dPy(x=1})

Ix ax @ - 1
fir)=fi(=r)=
The expansion of exj cost)/D) in a series of modified ' ’ 2[exp(—r)—expr)]
Bessel function of the first kinfB] yields S,(x=1)
Acog Ot) - A [1+exp(—V,/D)]
exp(T) =|:Z_w |.(5) cog10t). 8 S,(x=0)

| e | TN req vy (9
Using expansion8) in Egs.(4) and(6) one seeks a solution

of Eq. (1) in regionsm=1,2 in the form Repeating the same procedure for the second ordek/ib Y
terms in the distribution functio(il0) and using the normal-

=AY o o .
Pm:Serzfl 5) f'm(x,t). ©) ization condition one obtains
[S,(x=0)+2(f,+Tf,+c.C)]
We keep only two corrections of lowest order AiD to 01=—02= A[1+expg—V,/D)] ) (19
the field-free probabilitiess,,. Then, one has to keep the
following terms in Eq.(9): 1

A _ A== i exg—V,/D)]
Pn=Snt+ ={[fmexp(rx)+f,exp —rx)JexpiQt)+c.c} _
D X[Sy(x=1)+2(f,expr)+T,exg —r)+c.c)].

+ (20

A 2
5) (Gt ZaX), (10
Our prime interest is the change of the flux due to the

wherer =(i©2/D)"? and c.c. stands for the complex conju- oscillations of barriers. The renormalized flixis defined

gate. o ) ) according to Eq(10) asJ+ (A/D)?z, which with the use of
_ For the time-independent part of the solutions one immethe foregoing formulas takes the following simple form:
diately finds from Eqgs(4) and (6) that

~ A\2
Vi Vol (Vi 1 J=J|1+ —)
51—{%0(6’6)9”](6 XI5 (19 D
1—V;—Vo— 6V1Vo—ViVa(Vq+V,) +VoV3
B ﬁﬁ_xi (12) > 1 2 1v2 12(1 2) 12,
=N 5B X b A(1+v1)%(1+v,)?
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Vi, power when the water is falling through cascade of horizon-
V1= EXF{ F) (21)  tal steps with notchegbarriers along the end of each step.
The question is what is the influence of the small periodic
oscillations of the barriergor stepg on the power of the

Two interesting conclusions follow from E¢R1): . L .
(1) The renormalized flux is independent of the frequencywaten‘all. The answer is that such oscillations may both in-

Q) of oscillations. The latter which enters all the foregoing greena;sgncirhgi(r:;iseiégeofg\évglrlégggsth|s influence is indepen-
— (i 112 ; .

formulas througir =(i©}/D)™* does not appearin EQZDZ The graph of Josephson potential in Fig. 1 shows a clear

However, the dependence on frequency will appear if thc—;-si

) A . X milarity between our model and the real problems involv-
width of the well is different from the width of the barrier as ing washboard potentials. However, the qualitative compari-

in the case of Josephson junctions. o son cannot be performed since we consider a motion in a
(2) The correction to the fIL_Jx induced k_Jy oscillations CaNperiodically changing flat potential while in real problems

be both positive and negative depending on the barriefhe periodic force acts on a moving particle. This difference

heights. For example, far;=exp(v1/D)=10, the correction results, in particular, in the correctian to a flux[Eq. (21)]

to the flux is positive fow ,=exp(V,/D)>2, and negative for ~which does not depend on frequency for the given geometry,

vo=exp(V,/D)<2. in contrast to the strong frequency dependence for the Jo-
The toy example of our system is a waterfall of constantsephson junctiong§‘Shapiro” steps.
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